The Z Shell Manual

Version 5.0.2
Updated December 21, 2012

Original documentation by Paul Falstad

This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Chapter 2: Introduction 1

1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi
The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:

http://zsh.sourceforge.net/Doc/.

(The HTML version is produced with texi2html, which may be obtained from
http://www.nongnu.org/texi2html/. The command is ‘texi2html --output .
—--ifinfo --split=chapter --node-files zsh.texi’. If necessary, upgrade to
version 1.78 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, info and HTML formats) is available from the zsh archive site or its mirrors,
in the file zsh-doc.tar.gz. (See Section 2.2 [Availability], page 1 for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. Zsh has command line editing, builtin spelling correction, programmable
command completion, shell functions (with autoloading), a history mechanism, and a host of
other features.

2.1 Author

Zsh was originally written by Paul Falstad <pf@zsh.org>. Zsh is now maintained by the
members of the zsh-workers mailing list <zsh-workers@zsh.org>. The development is cur-
rently coordinated by Peter Stephenson <pws@zsh.org>. The coordinator can be contacted at
<coordinator@zsh.org>, but matters relating to the code should generally go to the mailing
list.

2.2 Availability

Zsh is available from the following anonymous F'TP sites. These mirror sites are kept frequently
up to date. The sites marked with (H) may be mirroring ftp.cs.elte.hu instead of the primary
site.

Chapter 2: Introduction 2

Primary site
ftp://ftp.zsh.org/pub/
http://www.zsh.org/pub/

Australia ftp://ftp.zsh.org/pub/
http://wuw.zsh.org/pub/
http://mirror.dejanseo.com.au/pub/zsh/

Hungary ftp://ftp.cs.elte.hu/pub/zsh/
http://www.cs.elte.hu/pub/zsh/

The up-to-date source code is available via anonymous CVS and Git from Sourceforge. See
http://sourceforge.net/projects/zsh/ for details. A summary of instructions for the CVS
and Git archives can be found at http://zsh.sourceforget.net/.

2.3 Mailing Lists
Zsh has 3 mailing lists:

<zsh-announce@zsh.org>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@zsh.org>
User discussions.

<zsh-workers@zsh.org>
Hacking, development, bug reports and patches.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@zsh.org>
<zsh-users—-subscribe@zsh.org>
<zsh-workers-subscribe@zsh.org>

<zsh-announce-unsubscribe@zsh.org>
<zsh-users-unsubscribe@zsh.org>
<zsh-workers-unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail
to <listmaster@zsh.org>. The mailing lists are maintained by Karsten Thygesen
<karthy@kom.auc.dk>.

The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive, maintained by Geoff Wing <gcw@zsh.org>,
available at http://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list. The latest version can be found at any of the Zsh FTP
sites, or at http://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<fagmaster@zsh.org>.

Chapter 3: Roadmap 3

2.5 The Zsh Web Page

Zsh has a web page which is located at http://www.zsh.org/. This is maintained by Karsten
Thygesen <karthy@zsh.org>, of SunSITE Denmark. The contact address for web-related mat-
ters is <webmaster@zsh.org>.

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at http://zsh.sourceforge.net/Guide/. At the time of writing, chapters dealing with
startup files and their contents and the new completion system were essentially complete.

2.7 The Zsh Wiki

A ‘wiki” website for zsh has been created at http://www.zshwiki.org/. This is a site which
can be added to and modified directly by users without any special permission. You can add
your own zsh tips and configurations.

2.8 See Also

man page sh(1), man page csh(1), man page tcsh(1), man page rc(1), man page bash(1), man
page ksh(1)

IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.

If no personal initialization files exist for the current user, a function is run to help you
change some of the most common settings. It won’t appear if your administrator has dis-
abled the zsh/newuser module. The function is designed to be self-explanatory. You can run
it by hand with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also
Section 26.10 [User Configuration Functions], page 376.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor], page 138.

The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.

A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell

Chapter 3: Roadmap 4

exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 77.

The shell now supports the UTF-8 character set (and also others if supported by the oper-
ating system). This is (mostly) handled transparently by the shell, but the degree of sup-
port in terminal emulators is variable. There is some discussion of this in the shell FAQ),
http://zsh.dotsrc.org/FAQ/ . Note in particular that for combining characters to be handled
the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive to the
definition of the character set, note that if you are upgrading from an older version of the shell
you should ensure that the appropriate variable, either LANG (to affect all aspects of the shell’s
operation) or LC_CTYPE (to affect only the handling of character sets) is set to an appropriate
value. This is true even if you are using a single-byte character set including extensions of
ASCII such as IS0-8859-1 or IS0-8859-15. See the description of LC_CTYPE in Chapter 15
[Parameters], page 67.

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.

Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.

The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 184.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern
functions for replacing strings or patterns globally in the command line

edit-command-line
edit the command line with an external editor.

See Section 26.6 [ZLE Functions], page 353 for descriptions of these.

Chapter 3: Roadmap 5

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options|, page 85.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 57.

Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:

*x for matching over multiple directories

S the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

.. glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar]|, page 9.

One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion|, page 42. In zsh, you can either explicitly request the splitting (e.g.
${=foo}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters|, page 68.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 20. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.

A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions], page 330. Features include:

promptinit
a prompt theme system for changing prompts easily, see Section 26.5 [Prompt
Themes]|, page 352

zsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator
zargs a version of xargs that makes the find command redundant

zZmv a command for renaming files by means of shell patterns.

Chapter 4: Invocation 6

4 Invocation

4.1 Invocation

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.

-i Force shell to be interactive. It is still possible to specify a script to execute.

-s Force shell to read commands from the standard input. If the —s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

If there are any remaining arguments after option processing, and neither of the options -c or -s
was supplied, the first argument is taken as the file name of a script containing shell commands
to be executed. If the option PATH_SCRIPT is set, and the file name does not contain a directory
path (i.e. there is no ‘/’ in the name), first the current directory and then the command path
given by the variable PATH are searched for the script. If the option is not set or the file name
contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.

For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions], page 85.

Options may be specified by name using the -o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.

¢

Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘=’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.

¢

The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘~-help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘=’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘=’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘==’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’ is
equivalent to ‘-x --’). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘~-shwordsplit’ is permitted and
does not end option processing.

Chapter 4: Invocation 7

Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘-=’, except that further single-letter options can be stacked
after the ‘-b’ and will take effect as normal.

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed to
stand for ‘restricted’), and if that is ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if invoked
as su (which happens on certain systems when the shell is executed by the su command), the
shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status, watch.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:

3

e changing directories with the cd builtin

e changing or unsetting the PATH, path, MODULE_PATH, module_path, SHELL, HISTFILE,
HISTSIZE, GID, EGID, UID, EUID, USERNAME, LD_LIBRARY_PATH, LD_AOUT_LIBRARY_PATH,
LD_PRELOAD and LD_AOUT_PRELOAD parameters

e specifying command names containing /
e specifying command pathnames using hash
e redirecting output to files
e using the exec builtin command to replace the shell with another command
e using jobs -Z to overwrite the shell process’ argument and environment space
e using the ARGVO parameter to override argv[0] for external commands
e turning off restricted mode with set +r or unsetopt RESTRICTED
These restrictions are enforced after processing the startup files. The startup files should set

up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Chapter 5: Files 8

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.

5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zshenv; this cannot be overridden. Subsequent behaviour
is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while the
second only affects global startup files (those shown here with an path starting with a /). If one
of the options is unset at any point, any subsequent startup file(s) of the corresponding type
will not be read. It is also possible for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both RCS
and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a login
shell, /etc/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zlogout are read. This
happens with either an explicit exit via the exit or logout commands, or an implicit exit by
reading end-of-file from the terminal. However, if the shell terminates due to exec’ing another
process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS options.
Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when the
shell exits, no history file will be saved.

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another
directory, depending on the installation.

As /etc/zshenv is run for all instances of zsh, it is important that it be kept as small as possible.
In particular, it is a good idea to put code that does not need to be run for every single shell
behind a test of the form ‘if [[-o rcs]]; then ...’ so that it will not be executed when
zsh is invoked with the ‘-’ option.

5.2 Files

$ZDOTDIR/ .zshenv
$ZDOTDIR/.zprofile

$ZDOTDIR/ .zshrc

$ZDOTDIR/ .zlogin

$ZDOTDIR/ .zlogout

${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zshenv

/etc/zprofile

/etc/zshrc

/etc/zlogin

/etc/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands|, page 107). If a compiled file exists (named for the original file plus the
.zwc extension) and it is newer than the original file, the compiled file will be used instead.

Chapter 6: Shell Grammar 9

6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. The first word is the command to be executed,
and the remaining words, if any, are arguments to the command. If a command name is given,
the parameter assignments modify the environment of the command when it is executed. The
value of a simple command is its exit status, or 128 plus the signal number if terminated by a
signal. For example,

echo foo
is a simple command with arguments.

A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&. Where commands are separated by |’,
the standard output of the first command is connected to the standard input of the next. ‘|&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.

If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the *>&p’ and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.

A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘| |’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘| |, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,

dmesg | grep panic && print yes

is a sublist consisting of two pipelines, the second just a simple command which will be executed
if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).

A list is a sequence of zero or more sublists, in which each sublist is terminated by *;’, ‘&’, ‘&|’,
‘&!’, or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...) " or ‘{...}’. When a sublist is terminated
by ¢;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.

Chapter 6: Shell Grammar 10

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘=’ prepended to its argv[0] string.

builtin The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [-pvV]
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [-cl] [-a argv0]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.
The -1 option is equivalent to the - precommand modifier, to treat the replacement

command as a login shell; the command is executed with a - prepended to its
argv [0] string. This flag has no effect if used together with the -a option.

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGVO environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

6.3 Complex Commands
A complexr command in zsh is one of the following:

if list then list [elif list then list | ... [else list | fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [in word ... | term do list done
where term is at least one newline or ;. Expand the list of words, and set the
parameter name to each of them in turn, executing list each time. If the in word
is omitted, use the positional parameters instead of the words.

More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for

Chapter 6: Shell Grammar 11

in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (([exprl] ; [expr2] ; [expr3])) do list done
The arithmetic expression exprl is evaluated first (see Chapter 11 [Arithmetic Eval-
uation], page 26). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
expr3 evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
FExecute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

The repeat syntax is disabled by default when the shell starts in a mode emulating
another shell. It can be enabled with the command ‘enable -r repeat’

case word in [[(] pattern [| pattern] ...) Iist (;;1;&l;1)] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation], page 57.
If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.

If the Iist that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not

re-expanded; all applicable patterns are tested with the same word.

select name | in word ... term | do list done

where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the
word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

(list) Execute list in a subshell. Traps set by the trap builtin are reset to their default
values while executing list.

{ Iist } Execute list.

{ try-list } always { always-list }
First execute try-list. Regardless of errors, or break, continue, or return com-
mands encountered within try-list, execute always-list. Execution then continues
from the result of the execution of try-list; in other words, any error, or break,
continue, or return command is treated in the normal way, as if always-list were
not present. The two chunks of code are referred to as the ‘try block’ and the ‘always
block’.

Chapter 6: Shell Grammar 12

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-1list would cause the shell
to abort during parsing, so that always-1list would not be executed, while an
erroneous substitution such as ${*foo*} would cause a run-time error, after which
always-1list would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-list the value is irrelevant, but it is ini-
tialised to -1. Inside always-1list, the value is 1 if an error occurred in the try-
list, else 0. If TRY_BLOCK_ERROR is set to 0 during the always-1list, the error
condition caused by the try-1list is reset, and shell execution continues normally
after the end of always-1list. Altering the value during the try-1list is not useful
(unless this forms part of an enclosing always block).

Regardless of TRY_BLOCK_ERROR, after the end of always-1list the normal shell
status $7 is the value returned from always-list. This will be non-zero if there
was an error, even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
code which may cause an error
} always {
This code is executed regardless of the error.
(C TRY_BLOCK_ERROR = 0))
b

The error condition has been reset.

An exit command (or a return command executed at the outermost function level
of a script) encountered in try-list does not cause the execution of always-list.
Instead, the shell exits immediately after any EXIT trap has been executed.

function word ... [() | [term | { Iist }
word ... () [term | { list }
word ... () [term | command

where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 20.

If the option SH_GLOB is set for compatibility with other shells, then whitespace
may appear between between the left and right parentheses when there is a single
word; otherwise, the parentheses will be treated as forming a globbing pattern in
that case.

time [pipeline |

[[exp 1]

The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions|, page 29 for a description of exp.

Chapter 6: Shell Grammar 13

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These are non-standard and are likely
not to be obvious even to seasoned shell programmers; they should not be used anywhere that
portability of shell code is a concern.

The short versions below only work if sublist is of the form ‘{ Ilist }’ or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[... 11 or ‘(C ...))’, else the end of the
test will not be recognized. For the for, repeat, case and select commands no such special
form for the arguments is necessary, but the other condition (the special form of sublist or use
of the SHORT_LOOPS option) still applies.

if list { list } [elif list { list }] ... [else { list } |
An alternate form of if. The rules mean that
if [[-o ignorebraces 1] {
print yes
}
works, but
if true { # Does not work!
print yes

}

does not, since the test is not suitably delimited.

if list sublist
A short form of the alternate ‘if’. The same limitations on the form of list apply as
for the previous form.

for name ... (word ...) sublist
A short form of for.

for name ... [in word ... | term sublist
where term is at least one newline or ;. Another short form of for.

for (([exprl] ; [expr2] ; [expr3])) sublist
A short form of the arithmetic for command.

foreach name ... (word ...) list end
Another form of for.

while list { list }
An alternative form of while. Note the limitations on the form of list mentioned
above.

until list { list }
An alternative form of until. Note the limitations on the form of list mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { [[(] pattern [| pattern | ...) list (;;1;&l;1)] ... }
An alternative form of case.

select name | in word term | sublist
where term is at least one newline or ;. A short form of select.

Chapter 6: Shell Grammar 14

6.5 Reserved Words

The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[{ }

Additionally, ‘}’ is recognized in any position if neither the IGNORE_BRACES option nor the
IGNORE_CLOSE_BRACES option is set.

6.6 Errors

Certain errors are treated as fatal by the shell: in an interactive shell, they cause control to
return to the command line, and in a non-interactive shell they cause the shell to be aborted.
In older versions of zsh, a non-interactive shell running a script would not abort completely, but
would resume execution at the next command to be read from the script, skipping the remainder
of any functions or shell constructs such as loops or conditions; this somewhat illogical behaviour
can be recovered by setting the option CONTINUE_ON_ERROR.

Fatal errors found in non-interactive shells include:

Failure to parse shell options passed when invoking the shell

Failure to change options with the set builtin

Parse errors of all sorts, including failures to parse
mathematical expressions

Failures to set or modify variable behaviour with typeset,
local, declare, export, integer, float

Execution of incorrectly positioned loop control structures
(continue, break)

Attempts to use regular expression with no regular expression
module available

Disallowed operations when the RESTRICTED options is set

Failure to create a pipe needed for a pipeline

Failure to create a multio

Failure to autoload a module needed for a declared shell feature

Errors creating command or process substitutions

Syntax errors in glob qualifiers

File generation errors where not caught by the option BAD_PATTERN

All bad patterns used for matching within case statements

File generation failures where not caused by NO_MATCH or

All file generation errors where the pattern was used to create a
multio

Memory errors where detected by the shell
Invalid subscripts to shell variables
Attempts to assign read-only variables
Logical errors with variables such as assignment to the wrong type
Use of invalid variable names
Errors in variable substitution syntax
Failure to convert characters in $’...° expressions
similar options

If the POSIX_BUILTINS option is set, more errors associated with shell builtin commands are
treated as fatal, as specified by the POSIX standard.

Chapter 6: Shell Grammar 15

6.7 Comments

In non-interactive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set,
a word beginning with the third character of the histchars parameter (‘4 by default) causes
that word and all the following characters up to a newline to be ignored.

6.8 Aliasing

Every token in the shell input is checked to see if there is an alias defined for it. If so, it is
replaced by the text of the alias if it is in command position (if it could be the first word of a
simple command), or if the alias is global. If the text ends with a space, the next word in the
shell input is treated as though it were in command position for purposes of alias expansion.
An alias is defined using the alias builtin; global aliases may be defined using the -g option to
that builtin.

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting part
of the word, e.g. \foo. Any form of quoting works, although there is nothing to prevent an alias
being defined for the quoted form such as \foo as well. For use with completion, which would
remove an initial backslash followed by a character that isn’t special, it may be more convenient
to quote the word by starting with a single quote, i.e. ’>foo; completion will automatically add
the trailing single quote.

There is a commonly encountered problem with aliases illustrated by the following code:
alias echobar=’echo bar’; echobar

This prints a message that the command echobar could not be found. This happens because
aliases are expanded when the code is read in; the entire line is read in one go, so that when
echobar is executed it is too late to expand the newly defined alias. This is often a problem in
shell scripts, functions, and code executed with ‘source’ or ‘.’. Consequently, use of functions
rather than aliases is recommended in non-interactive code.

Note also the unhelpful interaction of aliases and function definitions:

alias func=’noglob func’
func() {
echo Do something with $*

}

Because aliases are expanded in function definitions, this causes the following command to be
executed:

noglob func() {
echo Do something with $*

}

which defines noglob as well as func as functions with the body given. To avoid this, either
quote the name func or use the alternative function definition form ‘function func’. Ensuring
the alias is defined after the function works but is problematic if the code fragment might be
re-executed.

6.9 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$°’ and *’’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘>’ character
can be included in the string by using the ‘\’’ escape.

Chapter 7: Redirection 16

All characters enclosed between a pair of single quotes (’?) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print))y
outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\” quotes the char-
acters ‘\’, <7, ‘" and ‘$’.

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word Open file word for reading as standard input.

<> word Open file word for reading and writing as standard input. If the file does not exist
then it is created.

> word Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

>| word
>! word Same as >, except that the file is truncated to zero length if it exists, even if CLOBBER
is unset.

>> word Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER option is unset, this causes an error; otherwise, the file is

created.

>>| word

>>! word Same as >>, except that the file is created if it does not exist, even if CLOBBER is
unset.

<<[-] word

The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.

If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, *“” and the first character of word.

Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes

Chapter 7: Redirection 17

in the form $’...> have their standard effect of expanding backslashed references to
special characters.

If <<~ is used, then all leading tabs are stripped from word and from the document.
<<< word Perform shell expansion on word and pass the result to standard input. This is

known as a here-string. Compare the use of word in here-documents above, where
word does not undergo shell expansion.

<& number

>& number
The standard input/output is duplicated from file descriptor number (see man page
dup2(2)).

<& -

>& - Close the standard input/output.

<& p

> p The input/output from/to the coprocess is moved to the standard input/output.

>& word

&> word (Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be
used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of ‘> word’. Note that this does not have the same
effect as *> word 2>&1’ in the presence of multios (see the section below).

>&| word
>&! word
&>| word

&>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of >| word’.

>>& word
&>> word Redirects both standard output and standard error (file descriptor 2) in the manner
of >> word’.

>>&| word

>>&! word

&>>| word

&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of *>>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

. 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

The ‘& command separator described in Section 6.1 [Simple Commands & Pipelines]|, page 9
is a shorthand for ‘2>&1 |’.

The various forms of process substitution, ‘<(list)’, and ‘=(list())’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution|, page 40.

Chapter 7: Redirection 18

7.1 Opening file descriptors using parameters

When the shell is parsing arguments to a command, and the shell option IGNORE_BRACES is
not set, a different form of redirection is allowed: instead of a digit before the operator there
is a valid shell identifier enclosed in braces. The shell will open a new file descriptor that is
guaranteed to be at least 10 and set the parameter named by the identifier to the file descriptor
opened. No whitespace is allowed between the closing brace and the redirection character. For
example:

.. {myfd}>&1

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor can
be written to using the syntax >&$myfd.

The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.

It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.

If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.
Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an
argument to exec. The syntax does not in any case work when used around complex commands
such as parenthesised subshells or loops, where the opening brace is interpreted as part of a
command list to be executed in the current shell.
The following shows a typical sequence of allocation, use, and closing of a file descriptor:

integer myfd

exec {myfd}>~/logs/mylogfile.txt

print This is a log message. >&$myfd

exec {myfd}>&-
Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.

7.2 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar

writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat
writes the date to the file ‘foo’, and also pipes it to cat.

If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus

D> %

Chapter 7: Redirection 19

will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> x.sh

If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, similar to cat, provided the MULTIOS option is set. Thus

sort <foo <fubar
or even
sort <f{oo,ubar}
is equivalent to ‘cat foo fubar | sort’.

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus
cat bar | sort <foo
is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).
If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so
echo foo > bar > baz
when MULTIOS is unset will truncate bar, and write ‘foo’ into baz.
There is a problem when an output multio is attached to an external program. A simple example
shows this:
cat file >filel >file2
cat filel file2

Here, it is possible that the second ‘cat’ will not display the full contents of filel and file2
(i.e. the original contents of file repeated twice).
The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before filel and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2

Here, the {...} job will pause to wait for both files to be written.

7.3 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.
If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.
If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.
Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.

Chapter 9: Functions 20

8 Command Execution

If a command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions|, page 20.
If there exists a shell builtin by that name, the builtin is invoked.

Otherwise, the shell searches each element of $path for a directory containing an executable
file by that name. If the search is unsuccessful, the shell prints an error message and returns a
nonzero exit status.

If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning
with ‘#!’, the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.

If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line arguments. The function should return status
zero if it successfully handled the command, or non-zero status if it failed. In the latter case
the standard handling is applied: ‘command not found’ is printed to standard error and the
shell exits with status 127. Note that the handler is executed in a subshell forked to execute
an external command, hence changes to directories, shell parameters, etc. have no effect on the
main shell.

9 Functions

Shell functions are defined with the function reserved word or the special syntax ‘funcname
()’. Shell functions are read in and stored internally. Alias names are resolved when the
function is read. Functions are executed like commands with the arguments passed as positional
parameters. (See Chapter 8 [Command Execution], page 20.)

Functions execute in the same process as the caller and share all files and present working
directory with the caller. A trap on EXIT set inside a function is executed after the function
completes in the environment of the caller.

The return builtin is used to return from function calls.

Function identifiers can be listed with the functions builtin. Functions can be undefined with
the unfunction builtin.

9.1 Autoloading Functions

A function can be marked as undefined using the autoload builtin (or ‘functions -u’ or ‘type-
set -fu’). Such a function has no body. When the function is first executed, the shell searches
for its definition using the elements of the fpath variable. Thus to define functions for autoload-
ing, a typical sequence is:

fpath=("/myfuncs $fpath)

autoload myfuncl myfunc2 ...
The usual alias expansion during reading will be suppressed if the autoload builtin or its
equivalent is given the option -U. This is recommended for the use of functions supplied with
the zsh distribution. Note that for functions precompiled with the zcompile builtin command
the flag =U must be provided when the .zwc file is created, as the corresponding information is
compiled into the latter.

For each element in fpath, the shell looks for three possible files, the newest of which is used to
load the definition for the function:

Chapter 9: Functions 21

element . zwc
A file created with the zcompile builtin command, which is expected to contain the
definitions for all functions in the directory named element. The file is treated in
the same manner as a directory containing files for functions and is searched for the
definition of the function. If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.

If element already includes a .zwc extension (i.e. the extension was explicitly
given by the user), element is searched for the definition of the function without
comparing its age to that of other files; in fact, there does not need to be any
directory named element without the suffix. Thus including an element such as
‘/usr/local/funcs.zwc’ in fpath will speed up the search for functions, with the
disadvantage that functions included must be explicitly recompiled by hand before
the shell notices any changes.

element/ function.zwc
A file created with zcompile, which is expected to contain the definition for function.
It may include other function definitions as well, but those are neither loaded nor
executed; a file found in this way is searched only for the definition of function.

element/ function
A file of zsh command text, taken to be the definition for function.

In summary, the order of searching is, first, in the parents of directories in fpath for the newer
of either a compiled directory or a directory in £path; second, if more than one of these contains
a definition for the function that is sought, the leftmost in the fpath is chosen; and third, within
a directory, the newer of either a compiled function or an ordinary function definition is used.

If the KSH_AUTOLOAD option is set, or the file contains only a simple definition of the function,
the file’s contents will be executed. This will normally define the function in question, but may
also perform initialization, which is executed in the context of the function execution, and may
therefore define local parameters. It is an error if the function is not defined by loading the file.

Otherwise, the function body (with no surrounding ‘funcname () {...}’) is taken to be the com-
plete contents of the file. This form allows the file to be used directly as an executable shell
script. If processing of the file results in the function being re-defined, the function itself is not
re-executed. To force the shell to perform initialization and then call the function defined, the
file should contain initialization code (which will be executed then discarded) in addition to a
complete function definition (which will be retained for subsequent calls to the function), and a
call to the shell function, including any arguments, at the end.

For example, suppose the autoload file func contains

func() { print This is func; }
print func is initialized

then ‘func; func’ with KSH_AUTOLOAD set will produce both messages on the first call, but only
the message ‘This is func’ on the second and subsequent calls. Without KSH_AUTOLOAD set,
it will produce the initialization message on the first call, and the other message on the second
and subsequent calls.

It is also possible to create a function that is not marked as autoloaded, but which loads its own
definition by searching fpath, by using ‘autoload -X’ within a shell function. For example, the
following are equivalent:

myfunc() {
autoload -X
}

myfunc args...

Chapter 9: Functions 22

and

unfunction myfunc # if myfunc was defined
autoload myfunc
myfunc args...

In fact, the functions command outputs ‘builtin autoload -X’ as the body of an autoloaded
function. This is done so that

eval "$(functions)"

produces a reasonable result. A true autoloaded function can be identified by the presence
of the comment ‘# undefined’ in the body, because all comments are discarded from defined
functions.

To load the definition of an autoloaded function myfunc without executing myfunc, use:

autoload +X myfunc

9.2 Anonymous Functions

If no name is given for a function, it is ‘anonymous’ and is handled specially. Either form of
function definition may be used: a ‘()’ with no preceding name, or a ‘function’ with an im-
mediately following open brace. The function is executed immediately at the point of definition
and is not stored for future use. The function name is set to ‘(anon)’.

Arguments to the function may be specified as words following the closing brace defining the
function, hence if there are none no arguments (other than $0) are set. This is a difference
from the way other functions are parsed: normal function definitions may be followed by certain
keywords such as ‘else’ or ‘fi’, which will be treated as arguments to anonymous functions, so
that a newline or semicolon is needed to force keyword interpretation.

Note also that the argument list of any enclosing script or function is hidden (as would be the
case for any other function called at this point).

Redirections may be applied to the anonymous function in the same manner as to a current-shell
structure enclosed in braces. The main use of anonymous functions is to provide a scope for
local variables. This is particularly convenient in start-up files as these do not provide their own
local variable scope.

For example,

variable=outside
function {
local variable=inside
print "I am $variable with arguments $x"
} this and that
print "I am $variable"

outputs the following:

I am inside with arguments this and that
I am outside

Note that function definitions with arguments that expand to nothing, for example ‘name=;
function $name { ... 1}, are not treated as anonymous functions. Instead, they are treated
as normal function definitions where the definition is silently discarded.

9.3 Special Functions

Certain functions, if defined, have special meaning to the shell.

Chapter 9: Functions 23

9.3.1 Hook Functions

For the functions below, it is possible to define an array that has the same name as the func-
tion with ‘_functions’ appended. Any element in such an array is taken as the name of a
function to execute; it is executed in the same context and with the same arguments as the
basic function. For example, if $chpwd_functions is an array containing the values ‘mychpwd’,
‘chpwd_save_dirstack’, then the shell attempts to execute the functions ‘chpwd’, ‘mychpwd’
and ‘chpwd_save_dirstack’, in that order. Any function that does not exist is silently ignored.
A function found by this mechanism is referred to elsewhere as a ‘hook function’. An error in
any function causes subsequent functions not to be run. Note further that an error in a precmd
hook causes an immediately following periodic function not to run (though it may run at the
next opportunity).

chpwd Executed whenever the current working directory is changed.

periodic If the parameter PERIOD is set, this function is executed every $PERIOD seconds,
just before a prompt. Note that if multiple functions are defined using the array
periodic_functions only one period is applied to the complete set of functions,
and the scheduled time is not reset if the list of functions is altered. Hence the set
of functions is always called together.

precmd Executed before each prompt. Note that precommand functions are not re-executed
simply because the command line is redrawn, as happens, for example, when a
notification about an exiting job is displayed.

preexec Executed just after a command has been read and is about to be executed. If
the history mechanism is active (and the line was not discarded from the history
buffer), the string that the user typed is passed as the first argument, otherwise it
is an empty string. The actual command that will be executed (including expanded
aliases) is passed in two different forms: the second argument is a single-line, size-
limited version of the command (with things like function bodies elided); the third
argument contains the full text that is being executed.

zshaddhistory
Executed when a history line has been read interactively, but before it is executed.
The sole argument is the complete history line (so that any terminating newline will
still be present).

If any of the hook functions return a non-zero value the history line will not be
saved, although it lingers in the history until the next line is executed allow you to
reuse or edit it immediately.

A hook function may call ‘fc -p ...” to switch the history context so that the history
is saved in a different file from the that in the global HISTFILE parameter. This is
handled specially: the history context is automatically restored after the processing
of the history line is finished.

The following example function first adds the history line to the normal history
with the newline stripped, which is usually the correct behaviour. Then it switches
the history context so that the line will be written to a history file in the current
directory.
zshaddhistory() {
print -sr -- ${1%%$’\n’}
fc -p .zsh_local_history
}

Chapter 9: Functions 24

zshexit

Executed at the point where the main shell is about to exit normally. This is not
called by exiting subshells, nor when the exec precommand modifier is used before
an external command. Also, unlike TRAPEXIT, it is not called when functions exit.

9.3.2 Trap Functions

The functions below are treated specially but do not have corresponding hook arrays.

TRAPNAL

TRAPDEBUG

TRAPEXIT

TRAPZERR

If defined and non-null, this function will be executed whenever the shell catches a
signal SIGNAL, where NAL is a signal name as specified for the kill builtin. The
signal number will be passed as the first parameter to the function.

If a function of this form is defined and null, the shell and processes spawned by it
will ignore SIGNAL.

The return status from the function is handled specially. If it is zero, the signal is
assumed to have been handled, and execution continues normally. Otherwise, the
shell will behave as interrupted except that the return status of the trap is retained.

Programs terminated by uncaught signals typically return the status 128 plus the
signal number. Hence the following causes the handler for SIGINT to print a message,
then mimic the usual effect of the signal.

TRAPINT() {
print "Caught SIGINT, aborting."
return $((128 + $1))

}

The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never executed inside other
traps.

If the option DEBUG_BEFORE_CMD is set (as it is by default), executed before each
command; otherwise executed after each command. See the description of the trap
builtin in Chapter 17 [Shell Builtin Commands|, page 107 for details of additional
features provided in debug traps.

Executed when the shell exits, or when the current function exits if defined inside a
function. The value of $7 at the start of execution is the exit status of the shell or
the return status of the function exiting.

Executed whenever a command has a non-zero exit status. However, the function
is not executed if the command occurred in a sublist followed by ‘&€&’ or ‘| |’; only
the final command in a sublist of this type causes the trap to be executed. The
function TRAPERR acts the same as TRAPZERR on systems where there is no SIGERR
(this is the usual case).

The functions beginning ‘TRAP’ may alternatively be defined with the trap builtin: this may be
preferable for some uses. Setting a trap with one form removes any trap of the other form for
the same signal; removing a trap in either form removes all traps for the same signal. The forms

TRAPN
co

¥

ALQO {
de

("function traps’) and

trap
co
’ NAL

(’list traps’)

)

de

are equivalent in most ways, the exceptions being the following:

Chapter 10: Jobs & Signals 25

e Function traps have all the properties of normal functions, appearing in the list of functions
and being called with their own function context rather than the context where the trap
was triggered.

e The return status from function traps is special, whereas a return from a list trap causes
the surrounding context to return with the given status.

e Function traps are not reset within subshells, in accordance with zsh behaviour; list traps
are reset, in accordance with POSIX behaviour.

10 Jobs & Signals

10.1 Jobs

If the MONITOR option is set, an interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns them small integer numbers.
When a job is started asynchronously with ‘&’, the shell prints a line to standard error which
looks like:

[1] 1234

indicating that the job which was started asynchronously was job n